Light-Scattering Detection below the Level of Single Fluorescent Molecules for High-Resolution Characterization of Functional Nanoparticles

نویسندگان

  • Shaobin Zhu
  • Ling Ma
  • Shuo Wang
  • Chaoxiang Chen
  • Wenqiang Zhang
  • Lingling Yang
  • Wei Hang
  • John P. Nolan
  • Lina Wu
  • Xiaomei Yan
چکیده

Ultrasensitive detection and characterization of single nanoparticles (<100 nm) is important in nanotechnology and life sciences. Direct measurement of the elastically scattered light from individual nanoparticles represents the simplest and the most direct method for particle detection. However, the sixth-power dependence of scattering intensity on particle size renders very small particles indistinguishable from the background. Adopting strategies for single-molecule fluorescence detection in a sheathed flow, here we report the development of high sensitivity flow cytometry (HSFCM) that achieves real-time light-scattering detection of single silica and gold nanoparticles as small as 24 and 7 nm in diameter, respectively. This unprecedented sensitivity enables high-resolution sizing of single nanoparticles directly based on their scattered intensity. With a resolution comparable to that of TEM and the ease and speed of flow cytometric analysis, HSFCM is particularly suitable for nanoparticle size distribution analysis of polydisperse/heterogeneous/mixed samples. Through concurrent fluorescence detection, simultaneous insights into the size and payload variations of engineered nanoparticles are demonstrated with two forms of clinical nanomedicine. By offering quantitative multiparameter analysis of single nanoparticles in liquid suspensions at a throughput of up to 10 000 particles per minute, HSFCM represents a major advance both in light-scattering detection technology and in nanoparticle characterization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)

Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...

متن کامل

Ultrasound-Promoted Synthesis and Characterization of Nanoparticles of Coordination Polymer [Co2(pydc)2(H2O)6]n.2nH2O

Nanoparticles of coordination polymer [Co2(pydc)2(H2O)6]n.2n H2O [H2pydc = pyridine-2,5-dicarboxylic acid] have been synthesized by sonochemical method and characterized by elemental analysis, infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, DLS particle size analysis and TGA/DTA. The structure of single crystalline coordination polymer developed from nanosized coo...

متن کامل

Synthesis and Functionalization of Gold Nanoparticles by Using of Poly Functional Amino Acids

Synthesis and characterization of two functionalized gold nanoparticles by using of two poly functional amino acids (L-Arginine and L-Aspartic acid) are reported. The gold nanoparticles were reduced by sodium citrate and functionalized with L-Arginine at the pH of 7 and 11 and L-Aspartic acid at the pH of 7. Transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, zeta p...

متن کامل

Preparation of Chitosan Nanoparticles Loaded by Dexamethasone Sodium Phosphate

      Biodegradable nanoparticulate carriers, have important potential applications for administration of therapeutic molecules. Chitosan based nanoparticles have attracted a lot of attention upon their biological properties such as biodegradability, biocom-patibility and bioadhesivity. The aim of the present investigation was to describe the synthesis and characterization of novel biodegradabl...

متن کامل

Resonant light scattering spectroscopy of gold, silver and gold-silver alloy nanoparticles and optical detection in microfluidic channels.

Dark field resonant light scattering by gold and silver nanoparticles enables the detection and spectroscopy of such particles with high sensitivity, down to the single-particle level, and can be used to implement miniaturised optical detection schemes for chemical and biological analysis. Here, we present a straightforward optical spectroscopic methodology for the quantitative spectrometric st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014